Каталог Минералов
 

Кристаллография


Науки о Земле / Кристаллография
обсудить на форуме

Кристаллография это наука о кристаллах: об их форме, происхождении, структуре, химическом составе и физических особенностях. Она является одной из научных дисциплин геологического цикла, наиболее тесно связанная с минералогией, находящаяся на стыке их и химии, математики, физики, биологии и т. д. Имеет и теоретическое, и прикладное значение.


Кристаллография это наука о кристаллах

История

Развитие кристаллографии подразделяют на три этапа: эмпирический (собирательный), теоретический (объяснительный), современный (прогностический).

Первые кристаллографические наблюдения относятся к античным временам. В древней Греции были предприняты первые попытки описания кристаллов с акцентом на их форму. Этому способствовало создание геометрии, пяти платоновых тел и множества многогранников.

В дальнейшем кристаллография развивалась в рамках минералогии в составе единого геологического научного направления. При этом она являлась исключительно прикладной дисциплиной, так как, по утверждению Р.Ж. Гаюи 1974 г., была наукой о законах огранения кристаллов.

И. Кеплера, создавшего в 1611 г. трактат «О шестиугольных снежинках», считают предшественником структурной кристаллографии.

В 1669 г. Я. Стеноп вывел принцип роста кристаллов, в соответствии с которым данный процесс происходит не изнутри, а путем наложения на поверхность приносимых жидкостью извне частиц. Также он отметил отклонение реальных кристаллов от идеальных многогранников.

В том же году Н. Стенсеном был сформулирован «закон постоянства углов кристаллов». В дальнейшем его же выводили многие независимые исследователи.

Термин «кристаллография» для обозначения науки о кристаллах впервые предложил в 1723 г. М. Капеллер. Таким образом, накопление знаний происходило до XIX в.

В качестве самостоятельной дисциплины кристаллография была описана в 1772 г. Ж. Б. Луи Роме-де-Лилем. К тому же, благодаря его трудам, в 1783 г. был окончательно утвержден закон постоянства углов. Так, он отметил, что возможно изменение граней кристаллов по форме и размерам, однако углы их взаимного наклона постоянны для каждого вида.

В начале существования кристаллографии в качестве отдельной научной напдисциплины наиболее интенсивно развивалось ее геометрическое направление.

Для измерения углов кристаллов М. Караижо создал специализированный прибор — прикладной гониометр, на основе чего зародился первый кристаллографический метод — гониометрия.

К.С. Вейссом был выведен закон зон (зависимость между положением ребер и граней), а Рэнэ-Жюст Гаюи сформулировал закон рациональности разрезов по осям, а также открыл плоскости спайности. В то же время последнее открытие было совершено Т. Бергманом.

В 1830 г. И. Гессель и в 1869 г. А. Гадолин определили наличие 32 видов симметрии и подразделили их на 6 сингоний.

В 1855 г. О. Браве вывел 14 типов пространственных решеток, а также ввел два элемента симметрии (центр и плоскость симметрии) и сформулировал определение симметричной фигуры.

П. Кюри определил семь предельных групп симметрии и зеркальные оси симметрии. На основе этого был сделан вывод о том, что симметрия определяет внешнюю форму кристалла, и всего существует девять ее элементов.

В 1855 г.  Е.С. Федоров также вывел 32 класса симметрии и занялся нахождением определяющих расположение атомов, ионов, молекул в кристаллах геометрических законов.

В XX в. началось интенсивное развитие физического (кристаллофизики) и химического (кристаллохимии) направлений, благодаря открытию дифракции рентгеновских лучей в кристаллах У.Л. Брэггом и Г.В. Вульфом, созданию метода рентгеноструктурного анализа и первым расшифровкам кристаллических структур в 1913 г. У.Г. и У.Л. Брэггами.

Таким образом, на втором этапе развития кристаллографии происходило исследование форм кристаллов и выяснение законов их строения.

Современная наука

В настоящее время кристаллография наиболее интенсивно развивается в экспериментальном и прикладном направлениях.

Данная дисциплина включает следующие разделы:

  • кристаллофизику - исследует физические особенности кристаллов: оптические, тепловые, механические, электрические,
  • геометрическую - рассматривает их формы, метрические параметры кристаллической решетки, углы и периоды повторяемости элементарной ячейки, устанавливает законы огранения и разрабатывает методы описания,
  • кристаллогенез - изучает формирование и рост кристаллов,
  • кристаллохимию - исследует связь физических особенностей с химическим составом, закономерности расположения атомов в кристаллах, химические связи между ними, атомную структуру,
  • структурную - изучает атомно-молекулярное строение кристаллов,
  • обощенную - использование структурных и симметрийных закономерностей кристаллографии в рассмотрении свойств и строения конденсированного вещества: жидкостей, аморфных тел, полимеров, надмолекулярных структур, биологических макромолекул.

В кристаллографии существует система понятий для дифференциации многогранников и кристаллических решеток. Она включает в иерархическом порядке категории симметрии, сингонии, кристаллографические (кристаллические) системы, решетки Браво, классы (виды) симметрии, пространственные группы.

Основным среди них считают сингонии. Это кристаллографические категории, в которые объединяют кристаллы на основе наличия определенного набора элементов симметрии. Нужно отметить, что существует путаница между терминами «сингония», «система решетки» и «кристаллическая система», в связи с чем часто их применяют как синонимы. Всего существует семь сингоний: триклинная, моноклинная, ромбическая, тригональная, тетрагональная, гексагональная, кубическая. Первые три относятся к низшей категории, вторые три к средней и последняя к высшей. Категории выделяют на основе равенства трансляций либо количества осей высшего порядка.

Теоретическую основу кристаллографии составляет учение о симметрии кристаллов. Изучение процессов их образования, таких как зарождение, молекулярная кинетика движения фазовой границы, массо- и теплоперенос при кристаллизации, формы роста, дефектообразование, осуществляется с позиций физико-химической кинетики, статистической и макроскопической термодинамики.

К прикладным вопросам относят изучение структуры реальных кристаллов, их дефектов, условий формирования, влияния на их свойства, синтеза.

Кристаллографию считают промежуточной дисциплиной. Наиболее тесно она связана с минералогией, так как зародилась в качестве ее раздела. Помимо этого, она связана с петрологией и прочими геологическими дисциплинами. Кристаллография расположена на пересечении  геологических наук, органической химии, математики, физики, радиотехники, химии полимеров, акустики, электроники и связана с молекулярной биологией, металловедением, прикладным искусством, материаловедением и т. д. Связь со многими из данных наук обусловлена общностью подхода к атомному строению вещества и близостью дифракционных методик.

Предмет, задачи, методы

Предметом данной науки являются кристаллы. Ее задачи состоят в исследовании их происхождения, структуры, химических и физических особенностей, происходящих в них процессов, взаимодействия с окружающей средой, изменений в результате различных воздействий.

Кроме того, сфера исследования кристаллографии включает анизотропные среды или вещества с близкой к кристаллической атомной упорядоченностью: жидкие кристаллы, кристаллические текстуры и т. д., а также агрегаты из микрокристаллов (поликристаллы, керамики, текстуры). К тому же она занимается внедрением теоретических достижений в практическую сферу.

Одним из специфических методов кристаллографии является гониометрия. Он состоит в применении для описания, объяснения и предсказания особенностей кристаллов и происходящих в них процессов углов между гранями. Также это позволяет идентифицировать кристаллы путем определения симметрии. Особо высоким значением гониометрия обладала до открытия дифракции рентгеновских лучей, так как являлась основным методом кристаллографии.

Помимо этого, к кристаллографическим методам относятся черчение и расчет кристаллов, их выращивание и измерение, оптическое исследование, рентгеноструктурный, кристаллохимический, электронографический анализы, нейтронографию, электронографию, оптическую спектроскопию, электронную микроскопию, электронный парамагнитный резонанс, ядерный магнитный резонанс и др.

Образование и работа

Кристаллографии обучают в рамках минералогии на геологических специальностях. Кроме того, существует отдельная специальность, которая ввиду узкоспецилизированности встречается крайне редко.

Кристаллографы работают в научно-исследовательской сфере в НИИ и лабораториях.

Заключение

Кристаллография изначально являлась исключительно прикладной дисциплиной, достижения которой использовались в ювелирном деле. Самостоятельной наукой она стала в XIX в. В настоящее время сфера исследования кристаллографии включает происхождение, свойства, состав, связь с окружающей средой кристаллов и кристаллоподобных веществ и происходящих в них процессов. Ввиду узкоспециализированности данная специальность встречается крайне редко, а профессия востребована в научно-исследовательской сфере.



  • Моя коллекция
  • Добавить образец
  • Добавить месторождение
  • Предложить новость
  • Управление рассылкой
  • Профайл