На Марсе, в отличие от Земли, намного более выражен космогенный геодинамический фактор. К тому же меньшая интенсивность эндогенных и экзогенных процессов приводит к длительной сохранности следов таких явлений в виде кратеров. Некоторые из них обладают примечательными особенностями, например, Коринто.
Коринто представляет собой относительно молодой и весьма крупный кратер, расположенный к северу от экватора, на Равнине Элизий. Его возраст оценивается в 2,34 млн лет. Диаметр кратера составляет около 14 км, глубина – 1 км. Это один из самых молодых марсианских кратеров такого размера. К тому же он обладает специфическим строением, включающим «лучевую систему».
Механизм формирования таких структур состоит в выбросе при ударе метеорита или астероида о поверхность планеты материала, находящегося в точке столкновения. Эти выбросы, разлетаясь с большой скоростью, образуют шлейфы обломков, ориентированные от кратера и называемые лучами. Размеры «лучевой системы» зависят от интенсивности столкновения, определяемой размерами, массой и скоростью объекта, конфигурация – от направления удара.
Так, Коринто характеризуется обширной системой лучей, наиболее развитой в южном направлении. Это свидетельствует о том, что кратер образовался в результате сильного столкновения с крупным объектом, вызвавшего выброс большого количества материала, причем удар был косым с севера, что повлекло преимущественный выброс обломков в противоположном направлении.
Таким образом, анализ «лучевых систем» кратеров позволяет реконструировать сформировавшие их удары, а также выяснить характеристики ударной волны и понять оказанное ею геологическое влияние.
Объектом исследований такого рода стал Коринто. Последние работы были посвящены влиянию столкновения, породившего кратер, на планету. Они были основаны на данных орбитального аппарата Mars Reconnaissance Orbiter. Его инструменты High Resolution Imaging Science Experiment и Context Camera использовали для анализа окружающих Коринто небольших кратеров с целью идентификации тех из них, что относятся к его «лучевой системе».
По результатам установлено, что выброс Коринто привел к образованию около 2 млн вторичных кратеров диаметром более 10 м в пределах 1850 км от него. В ходе анализа по форме, размерам и конфигурации они были подразделены на 5 «фаций».
Полученные выводы способствуют пониманию марсианских геологических процессов космогенного характера. Они могут привести к пересмотру модели формирования кратеров и геодинамики Марса. Однако новизна результатов требует подтверждениях их дальнейшими исследованиями.
Путем моделирования ученые выяснили, что суперземли и мини-нептуны образуются в узких кольцах протопланетных дисков. Данная модель согласуется с наблюдениями за составом и распределением таких объектов в системах и рядом других теорий планетообразования. »»»
Ученые обнаружили третью экзопланету, испаряющуюся вследствие близости орбиты к звезде. Причем она является наиболее быстро разрушающейся из известных. Предполагается, что процесс займет 1-2 млн лет. Об его интенсивности свидетельствует наличие кометоподобного хвоста протяженностью около 9 млн км. »»»
На основе анализа данных по атмосфере Марса ученые выяснили, что в ее циркуляции значительную роль играют гравитационные волны. Так, с ними связано более 10% атмосферных колебаний температуры и плотности на высотах более 60 км. Это особо интенсивно проявляется в средней атмосфере на средних и высоких широтах. »»»
Путем моделирования ученые выяснили, что для приливно-заблокированных экзопланет особо значимы кометные удары. Это обусловлено большей вероятностью таких событий ввиду особенностей орбитального и динамического взаимодействий их со звездами и более выраженными последствиями в связи со спецификой атмосферной динамики. »»»
Путем определения числа взрывов сверхновых во Млечном пути ученые выявили соответствие этих событий вблизи Солнца с временными интервалами позднеордовикского и позднедевонского вымираний. Они объясняют эту связь возможным разрушением озонового слоя, инициацией кислотных дождей и климатическими изменениями. »»»
Ученые разработали новый метод измерения периода вращения Урана, основанный на анализе полярных сияний планеты. С его использованием был уточнен данный параметр. К тому же он открыл новые возможности для изучения магнитосферы планеты. »»»
На основе повторного анализа данных NASA Dawn по Весте с учетом новых методов ученые установили, что данный объект не имеет ядра, на наличие которого указывал первичный анализ. Они предположили, что это может быть связано с незавершенной дифференциацией или тем, что Веста является фрагментом протопланеты. »»»
На основе анализа данных миссии Chandrayaan-3 и моделирования ученые выяснили, что лед может формироваться на склонах от 14° высоких широт, обращенных от Солнца и к ближайшему полюсу. Это свидетельствует о более обширном потенциальном распространении льда на лунной поверхности, чем предполагалось. »»»